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Stable three-dimensional optical solitons supported by competing quadratic and self-focusing
cubic nonlinearities
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We show that the quadratic (x®) interaction of fundamental and second harmonics in a bulk dispersive
medium, combined with self-focusing cubic (y'¥)) nonlinearity, give rise to stable three-dimensional spatiotem-
poral solitons (STSs), despite the possibility of the supercritical collapse, induced by the X(S) nonlinearity. At
exact phase matching (8=0), the STSs are stable for energies from zero up to a certain maximum value, while
for B#0 the solitons are stable in energy intervals between finite limits.
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Optical solitons (temporal, spatial, and spatiotemporal)
are at the core of the current research trends in nonlinear
optics [1,2]. In many physically relevant models, which are
not integrable, these are “solitary waves,” rather than solitons
in the mathematically rigorous meaning of the word but,
nevertheless, it has become common to use the term “soli-
ton” in the loose sense. In particular, spatiotemporal solitons
(STSs), also known as “light bullets” [3], have attracted a
great deal of attention in recent years, as reviewed in Ref.
[4]. These are multidimensional pulses, which maintain their
shape in the longitudinal (temporal) and transverse (spatial)
directions due to the balance between the group-velocity dis-
persion (GVD), diffraction, and nonlinear self-phase modu-
lation. However, solitons in media with the cubic self-
focusing nonlinearity, which obey the nonlinear Schrodinger
(NLS) equation, are unstable in two and three dimensions
(2D and 3D), due to the possibility of collapse in the same
model [5]. Several ways to arrest the collapse and stabilize
STSs were considered, such as periodic alternation of focus-
ing and defocusing layers [6] and generalizations of this set-
ting [2], dispersion management in 2D waveguides [7], lat-
tice potentials in various forms [8], and the use of media
exhibiting saturable [9] or quadratic (x'*) [10] nonlineari-
ties. Despite the great progress in theoretical studies, the only
successful experiment in this field was, thus far, the creation
of quasi-(2+1)D STSs in bulk samples of x® materials
[4,11].

A natural setting for the making of stable multidimen-
sional solitons is provided by competing nonlinearities, such
as combinations of cubic-quintic (CQ) [12,13] and quadratic-
cubic (Y@: x®)) types [14,15]. In most cases [12,13,15], the
competing nonlinearities were considered in terms of stabi-
lization of spinning solitons, as the fundamental (zero-
vorticity) multidimensional solitons are stable in y'* media
without the addition of x® nonlinearity [10], but spinning
solitons are unstable in the same case [16]. In these settings,
it was assumed that the higher nonlinear term, i.e., the quin-
tic one in the CQ model, or the cubic term in the x:y®
system, was self-defocusing, otherwise the model would give
rise to collapse, and it was tacitly conjectured that the soli-
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ton’s stability is not compatible with collapse. On the other
hand, in works that considered cylindrically symmetric zero-
vorticity (2+1)D spatial solitons in the bulk medium it was
concluded that the combination of ¥ and self-focusing x®
nonlinearities allows the existence of stable solitons of this
type [17] (see also Ref. [18]). Further, both numerical simu-
lations and experimental results reported in Ref. [11] dem-
onstrate that 2D STSs may be stable too in a medium of the
same type. In addition, it was recently demonstrated that a
1D model with the CQ nonlinearity, in which both cubic and
quintic terms are self-focusing (such a model applies to
Bose-Einstein condensation with attractive interactions be-
tween atoms), also gives rise to a family of stable solitons,
despite the possibility of collapse in the respective Gross-
Pitaevskii equation [19].

In fact, the coexistence of stable solitons with collapse in
the abovementioned examples is not very surprising, as the
respective models give rise to the critical collapse only,
which is a regime observed exactly at the border between
collapsing and noncollapsing model [5] (the critical collapse
is simultaneously called strong, as the collapsing core in-
volves a finite share of the initial energy, while, in the super-
critical situation, the collapse is weak, as the share of the
initial energy remaining in the collapsing core is vanishingly
small, since the violent character of the collapse dynamics in
this case leads to ejection of energy from the self-
compressing core [5,20]). A challenging issue is whether
three-dimensional STSs may be stable in the presence of the
supercritical collapse, which actually implies consideration
of the x¥'»:x'® model in three dimensions, with the self-
focusing cubic term. The model of this type is the most rel-
evant one to optics, as it is difficult to find a medium com-
bining the second-harmonic generation and negative Kerr
coefficient, while the self-focusing Kerr nonlinearity is a
common feature of x® media [4,11]. The objective of the
present work is to demonstrate that families of stable 3D
optical STSs are possible in media combining x? and self-
focusing x'* nonlinearities. This result can be understood, as
the x'» nonlinearity plays a dominant role if the soliton’s
amplitude is small enough, and it is known that the x®
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model proper supports stable 3D solitons [4] (this was first
demonstrated as early as in 1981, in the model with zero
mismatch [21]). The solitons are expected to lose their sta-
bility at larger values of their energy (amplitude), where the
x®'nonlinearity dominates, driving the system toward the
collapse.

Next we briefly present the physical model and the gov-
erning equations and then we report the basic numerical re-
sults for the existence and stability of soliton families, the
latter being determined through computation of stability ei-
genvalues for perturbation modes. Direct numerical simula-
tions confirm the predictions for the stability, and demon-
strate that stable solitons readily self-trap from arbitrary
initial pulses.

The general x»: x® model relevant for the 3D case was
elaborated in Ref. [15]. It can be used for the present pur-
pose, by reversing the sign in front of the y'* terms

ity + (1/2) (uxx + ttyy + uzrp) + u'v + (Ju)? + 2jv[Hu =0,

vz + (1/4)(vyx + Vyy + ovgp) — Bu + u? + 22Jul* + [v[)v =0.
(1)

Here, u and v are local amplitudes of the fundamental-
frequency (FF) and second-harmonic (SH) waves with phase
mismatch B between them, 7, (X,Y), and Z are the reduced
time, two transverse spatial coordinates, and propagation dis-
tance, and the y'» and y® coefficients can be normalized as
set in the equations. Equations (1) assume different GVD
coefficients at the two harmonics, with ratio o between them
[10] (the GVD coefficient in the equation for the FF compo-
nent is normalized to be 1). Due to the invariance with re-
spect to spatial rotations in the 3D space, Egs. (1) feature
invariance with respect to the “spatial Galilean transform.”
On the contrary, the Galilean invariance proper, with respect

to the temporal transformation T=T-cZ with an arbitrary
real walk-off parameter ¢, does not take place unless o=1 in
Egs. (1) [18]. The latter fact implies that generation of a
family of “temporally walking”solitons in the case of o# 1
is, by itself, a nontrivial problem. For 1D solitons, this prob-
lem was considered in detail in Ref. [22].

Stationary fundamental-soliton solutions to Egs. (1) are
looked for in the wusual form wu=U(r,T)exp(ikZ),
v=V(r,T)exp(2ikZ), with amplitudes U and V obeying the
equations

(172)(U,, + r'U, + Upp) = kU + U'V+ (U +2|V)U =0,

(1/4)(V,, + r 'V, + aVyp) = 2k + B)V+ U* + 22|U[
+|VHv=0. (2)

Equations (1) conserve the total energy E=[[[(|u|?
+|v[*)dXdYdT, Hamiltonian H, and three components of the
momentum [1]. From dependence E=E(k) for the families of
stationary solitons, one can try to predict their stability on the
basis of the Vakhitov-Kolokolov (VK) criterion [5,23],
dE/dk>0, which is a necessary stability condition, securing
the absence of instability eigenmodes with real eigenvalues.
In Fig. 1 we summarize the output of extensive numerical
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FIG. 1. Numerically found domains of the existence and stabil-
ity of the spatiotemporal solitons for o=1.

calculations aimed to identify domains of the existence and
stability of fundamental STSs in the parameter plane (k, B).
We start with the case of the spatiotemporal isotropy o=1 (a
typical example of the situation with o# 1 is shown below in
Fig. 3). It is seen from Fig. 1 that the stability domain is
asymmetric with respect to the mismatch parameter [; at
B<0, the stability region expands to larger k, whereas at
B>0 the stability region shrinks in comparison with itscoun-
terpart for S=0.

In Fig. 2, we display curves E=E(k) and H=H(E) for
one-parameter families of the soliton solutions. A noteworthy
feature of these dependences is that the 3D solitons exist at
exact phase matching (8=0) and at positive mismatch for
any k>0, whereas at 8<0 they exist only above a certain
cutoff value kcq=—[/2 (see also Fig. 1). We observe that the
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FIG. 2. (Color online) Characteristics of numerically found spa-
tiotemporal soliton families for o=1. (a), (c) Energy E vs wave
number k; (b), (d) Hamiltonian vs E. In panels (a) and (b), labels 1,
2, and 3 correspond to S=-0.05, 8=0, and 8=0.05, respectively. In
(c) and (d), labels 1 and 2 correspond to 8=-0.01 and 8=0.01. Red
(dark grey) and black lines depict unstable and stable soliton
branches, respectively.
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FIG. 3. (Color online) Energy E vs wave number k for soliton
families at two values of the GVD ratio o, and for 8=0 (zero
mismatch). Red (dark grey) and black lines depict unstable and
stable solution branches, respectively, while blue (light grey) lines
represent unstable 3D solitons in the corresponding x® medium.

stability of the solitons precisely obeys the VK criterion
dE/dk>0, despite the fact that, in more general situations
(actually, for spinning solitons), this criterion is not a suffi-
cient one. The method of the stability analysis is explained
below. At exact phase-matching (8=0), the STSs are stable
for energies from zero up to a certain maximum value,
En.x=~6.2, and the Hamiltonian-versus-energy (H-E) dia-
gram displays a single cuspidal point, whereas for moderate
finite values of B (either positive or negative ones) the soli-
tons are stable in intervals of energy between finite limits,
and the respective H-E diagrams feature a characteristic
swallowtail shape, with two cuspidal points (the use of the
H-E diagrams in the analysis of the existence and stability of
solitons is explained in Ref. [24]). It is also obvious from
Fig. 2 that the stability interval, in terms of E, shrinks and
then disappears with the increase of B (it exists for
B==+0.01, and is absent for B8==+0.05). The latter feature
qualitatively resembles that found in numerical simulations
of the 2D model with the x® and self-focusing x> nonlin-
earities in Ref. [11], see Fig. 15 in that work.

In Fig. 3 we plot energy E vs wave number k for two
representative values of the GVD ratio o. Note that the soli-
ton solutions bifurcate from unstable 3D NLS solitons of the
SH wave V in the cubic medium, which are particular solu-
tions to Egs. (1) with U=0 and V # 0. The bifurcation points
are marked by open circles in Fig. 3. The k=k(FE) relation for
these unstable solitons k=—/3/2+const X ¢E~2, with const
~0.69 [5], is depicted by blue (light grey) lines in Fig. 3.
Full stability of the solitons is determined by eigenvalues A\
of small perturbations, that we computed from the equations
linearized around the stationary solutions. In Figs. 4(a) and
4(b), we plot the maximum value of the instability gain,
Re(N\), as a function of the shifted propagation constant,
k—kcg, of the unperturbed STSs, for =1 and three repre-
sentative values of mismatch . At 8=0, the stability region,
with Re(\)=0, is 0<k<0.02. With B#0, numerically
found stability windows are 0.0064<k<0.022 for
B=-0.01, and 0.0012<k<<0.017 for B=0.01. The predic-
tions of the linear stability analysis were checked in
direct simulations of Egs. (1), which were run by means
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FIG. 4. The largest real part of the perturbation growth rate vs
the shifted soliton’s wave number k—kcq, in the model with o=1.
Labels 1, 2, and 3 correspond to 8=-0.01, 8=0.01, and =0, re-
spectively. Panels (a) and (b) separately display the instability
growth rates near the left and right edges of stability windows.
There is no curve with label 3 in the left panel, as the stability
region for B=0 starts at k—kco=0.

of the standard Crank-Nicholson scheme. The initial condi-
tions for perturbed solitons were taken as u(Z=0)
=UX,Y,T)(1+€Q), v(Z=0)=V(X,Y,T)(1+€Q), where
(U,V) is a stationary STS solution constructed as described
above, € is a small perturbation amplitude, and Q was
either a random variable uniformly distributed in interval
[-0.5,0.5], or simply Q=1 (uniform perturbation). This way,
we have checked that all STSs that were predicted above to
be stable or unstable, as per the eigenvalues of small pertur-
bations, are stable/unstable indeed in direct simulations. In
particular, unstable solitons either decay or suffer collapse.
The robustness of stable solitons is illustrated by self-
trapping of a 3D soliton from an arbitrary spatiotemporal
pulse. A typical example of that is shown in Fig. 5 for an
isotropic Gaussian input, which generates a stable ellipsoidal
soliton, adjusted to o# 1.

In conclusion we have demonstrated that the quadratic
(x?) interaction between fundamental-frequency and
second-harmonic waves in bulk dispersive media, combined
with the self-focusing cubic nonlinearity, give rise to a fam-
ily of 3D spatiotemporal optical solitons, which may be
stable, despite the presence of the supercritical collapse in
the model. The stability region of the solitons was, at first,

@) (b)

(d

FIG. 5. Self-trapping of the 3D soliton for 0=0.1 and 8=0. (a)
and (c) The Gaussian input in the FF and SH components; (b) and
(d) the FF and SH soliton components at Z=20 000.
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predicted on the basis of the Vakhitov-Kolokolov criterion,
then confirmed by the computation of the corresponding sta-
bility eigenvalues, and finally verified in direct simulations.
The physical relevance of the results is emphasized by the
fact that optical x®) materials, available to the experiment,
always feature the self-focusing Kerr nonlinearity [11].
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